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Deutsch [1991] proposes a simple solution to 
such paradoxes: Assume nature assigns 
probabilities to timelike causalities. E.g., the 
man goes back to kill his grandfather with 
probability ½ and is never born with probability 
½. Since every Markov process has a stationary 
distribution, there is a fixed point probabilistic 
solution to every such CTC causality loop."
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Of course, such a fixed point might not be 
unique, which allows for anti-paradoxes: for 
instance, in the Shakespeare anti-paradox, a 
time traveler goes back in time and dictates 
Hamlet to Shakespeare (before he has written 
it), who then writes Hamlet, so that years later 
the time-traveler can go back and dictate it to 
him. (So, who wrote Hamlet?).#Our approach 
allows for this. #So, for example, if there are 
multiple possible answers for a particular query, 
our algorithm will pick one of them with 
extremely high probability, but we can't say 
which one it will be with any certainty."

What if we could send a message 
back 1 second in time? "
That is, what if closed timelike curves (CTCs), 
existed and could be used by computers? The 
implications of such phenomena for computation 
have been previously studied [see references], and 
results have been obtained only for machines 
sending information back a polynomial amount of 
time to answer yes/no questions."
Can CTCs answer general queries in 1 second?  

Answering Queries Using a Time Machine!
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Aaronson and Watrous [2009] (see also Aaronson 
[2011]) show that PSPACE=P with a CTC, but 
only for yes/no problems. (Note: self-reducibility 
doesn’t apply to CTCs, since we cannot “iterate” 
them like conventional algorithms.)"
Our solution: Let A be a PSPACE optimization or 
search algorithm. Simulate A using a CTC, with 
each step of the simulation involving the CTC to 
send back the result of one step of a computation, 
whose state is maintained by a tuple, (M,Y,B), 
where M is the contents of A’s memory, Y is a 
representation of a potential solution, and B is a bit 
to indicate that this is a correct solution. #If B=0, 
then can increment M according to the algorithm A 
stored inside M (including a PC counter that 
represents the step we are on),  and also including 
an updating of Y, and if this is the last step in the 
algorithm A an update to convert B from 0 to 1. #If 
B=1, on the other hand, we just send the current 
state back in time. #The probability will only send 
back the final answer with high probability and 
every other state with very low, but non-zero 
probability."
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Before answering this question, we 
must deal with some paradoxes… "
For instance, in the grandfather 
paradox, a man travels back in 
time and kills his grandfather. The 
problem is that this man then is 
never born, so he can’t go back to 
kill his grandfather. But if he can’t 
go back in time to kill his 
grandfather, … [Cue infinite loop.]"
We can just as simply construct an 
equally upsetting computational 
grandfather paradox simply by 
thinking of the man and his 
grandfather in terms of information 
and algorithms. The man and his 
grandfather are two branches of a 
program. The program sends back 
a message one second in time 
instructing itself not to send the 
message back in time in one 
second. So the program doesn’t, so 
the program does, so the program 
doesn’t…etc."
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There are several applications of such an approach, 
which yield 1-second, i.e., O(1)-tiime, Monte 
Carlo algorithms for a number of problems, which 
succeed with very high probability."
•  Find a subset, S, of a given set, X, that satisfies 

a Boolean formula, F, if it exists."
•  Decrypt a deterministically encrypted message, 

C, without knowing the key that encrypted it."
•  Find an optimal Traveling Salesperson Tour."
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